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bstract

A quantitative image reconstruction algorithm for electrical resistance tomography (ERT) has been developed to visualize multiphase flows, like
lurry flows in pipes. Based on image reconstruction techniques from literature, a generalized iterative algorithm (GIA) has been derived to solve
he ERT inverse problem. Performance of this algorithm has been studied for synthetic and experimental test cases representing rods and solid
article beds in a pipe.

Quantitative images have been obtained for each test case and a suitable strategy for the image reconstruction has been identified. In particular,

t was found that convergence of the GIA can be ensured using Landweber or Tikhonov iterations, an efficient forward problem solver and an
ppropriate relaxation factor. Finally, experimental calibration curve of concentration of solid particle beds in a horizontal pipe has been done using
he GIA. Results show the capability of ERT to produce quantitative concentration measurements of multiphase flows.

2008 Elsevier B.V. All rights reserved.
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. Introduction

Electrical resistance tomography (ERT) is a non-intrusive
rocess tomography technique, aiming at visualizing multiphase
ows. ERT systems are composed of a hardware part, which

ncludes the sensor with electrode ring(s), the data acquisition
ystem, and the computer to generate images. The working prin-
iple consists of injecting electrical current between a pair of
lectrodes and measuring the potential differences between the
emaining electrode pairs. This procedure is repeated for all the
ther electrode pairs until a full rotation of the electrical field
s completed to form a set of measurements. Each dataset is
nterpreted by image reconstruction algorithms to compute a
ross-sectional image corresponding to the electrical conductiv-
ty inside the sensor. The concentration of each phase can be

omputed based on the knowledge of the electrical conductivity
f each phase, yielding the concentration tomogram.

∗ Corresponding author. Tel.: +1 514 340 4040; fax: +1 514 340 4105.
E-mail address: louis.fradette@polymtl.ca (L. Fradette).
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ERT can be applied to various processes involving a con-
uctive fluid as the continuous phase. Typical applications of
RT are the visualization of multiphase flow in pipes and agi-

ated tanks, for which commercial devices are now available for
wide range of sensor dimensions and materials. Examples of

pplications for electrical tomography have been reviewed [1–3]
nd recent applications for ERT are reported in Table 1.

The advantage of ERT lays in its excellent time resolution
rising from the very fast measurements of electrical resistances.
oreover, electrical tomography techniques are safe and cheap

n comparison to nuclear techniques, and make them suitable for
oth research and process industry. The drawback of ERT resides
n the relatively low spatial resolution, reported as being between
and 10% of the sensor diameter [2,4]. In fact, electrical tomo-
raphy is considered as a soft-field technique since the image is
ased on measurements at the periphery of the sensor and the
mage reconstruction involves resolution of a mathematically
hallenging inverse problem.
Over the years, many image reconstruction techniques have
een proposed for electrical tomography, but the simplest one,
he linear back-projection (LBP), is still the most widely used
ecause it allows online imaging. The excellent time resolution

mailto:louis.fradette@polymtl.ca
dx.doi.org/10.1016/j.cej.2008.01.011
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Table 1
Recent applications of ERT to monitor multiphase flow

Applications Phases References

Pipe
flow

S–L [18–21]
G–L [22–24]
L–L [25,26]

Agitated
tank

L–L [27,28]
G–L [27]
S–L [29]
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ig. 1. Meshes of ERT sensor used to generate synthetic data and reconstruct
mage with GIA: (i) 2D mesh (1028 P1 finite elements, 563 nodes) and (ii) 3D

esh (78,898 P1 finite elements, 15,298 nodes).

nd the qualitative images provided by LBP are often sufficient
o monitor and visualize transient multiphase flows.

Quantitative tomography techniques are important to char-
cterise a multiphase flow and efficient strategies of image
econstruction for ERT must be developed. Despite the numer-
us efforts on image reconstruction deployed in electrical
omography, there are very few reports concerning the per-
ormance, validation, and limitations of quantitative image
econstruction techniques [5,6]. The selection of the most suit-
ble image reconstruction strategy to support the adequate
nterpretation of ERT images is often hampered by the lack of
xperimentally validated results.

Most of the efforts made in electrical tomography for the
evelopment of image reconstruction techniques and their
uantitative validation were made in electrical capacitance
omography (ECT). Among the works on ECT offering a con-
rontation with synthetic and experimental data, investigations in

7–11] have compared results for various image reconstruction
echniques for both synthetic and experimental data. In general,
terative methods have been reported to improve the precision
f the results in comparison to direct methods, like the LBP.

a

σ

acked-bed reactor S–L [30]
ubble column G–L [31–35]

espite the effectiveness of the iterative methods to provide
uantitative results when used in very controlled environments,
he selection of the appropriate algorithm and related numeri-
al parameters often requires a trial-and-error scheme to reach
solution comparable to the experiments. It can obviously be

nvisaged to transpose the image reconstruction techniques used
or ECT to ERT since there is a simple mathematical analogy
etween them, but the performance of these algorithms must
ystematically be evaluated and an efficient strategy must be
evised to free the algorithms from the dependence on manual
election of parameters.

The present work aims at developing a quantitative image
econstruction method usable for ERT. First, a generalized iter-
tive algorithm (GIA) is devised from the generalization of
he image reconstruction techniques available in the electrical
omography literature. Then, the performance of two iterative
mage reconstruction techniques is investigated for synthetic
ata to identify a reliable strategy to reconstruct quantitative
mages from ERT. Finally, the performance of the proposed GIA
s assessed by confrontation of the reconstructed images with
xperimental data. A parallel comparison of the results with the
utput from the commercial software using the LBP algorithm
s also made.

. Image reconstruction for ERT

.1. Problem formulation

The goal of image reconstruction in ERT is to compute a
omogram representing the electrical conductivity of materials
owing within the sensor from voltages measured at the periph-
ry of the sensor in response to the injected electrical current.
he electrical conductivity σ and electrical potential Φ are gov-
rned by the Maxwell relations and simplifications in the case
f ERT lead to the classical Poisson equation:

(σ∇Φ) = 0 in Ω, (1)

here Ω represents the domain occupied by the medium to
nalysis. Boundary conditions for Eq. (1) are given by
∂Φ

∂n
= c in ∂Ω, (2)
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here n is the vector normal to the sensor periphery ∂Ω. The
urrent density in Eq. (2) is given by

=

⎧⎪⎨
⎪⎩

I/A in ∂Ω+
−I/A in ∂Ω−
0 in ∂Ω\(∂Ω+ ∩ ∂Ω−)

(3)

here ∂Ω+ and ∂Ω− are the surfaces of the source and sink
lectrodes, respectively, A is the area of electrode and I is the
lectrical current. The potential drop at the fluid–electrode inter-
ace can be included in Eq. (2) leading to complete electrode
odel (CEM):

+ zσ
∂Φ

∂n
= V in ∂ΩV , (4)

here z is the electrode’s contact impedance and V is the poten-
ial at the electrode surface ∂ΩV.

.2. Forward problem

Knowing the distribution of σ (i.e. the image), the problem
f finding the electrical potential and potential differences V
etween electrode pairs for a given current injection is called
he forward problem and it is denoted:

= F (σ), (5)

here F is defined as the forward operator governed by Eq. (1)
ith boundary conditions given by Eqs. (2), (3) and (4).
Finite element methods (FEM) are widely used to solve the

orward problem in electrical tomography [6]. Nowadays, many
EM implementations are available for this well-known Poisson
quation problem necessitating a simple inversion of a linear
ystem. In the case of ERT, it provides an approximation of
he potential differences for a given conductivity distribution σ,
enoted:

FEM = FFEM(σ), (6)

here FFEM is called the FEM forward operator. The conduc-
ivity distribution is generally defined as a constant per element
n the mesh, each discrete value corresponding to a pixel of the
mage.

Another forward operator can be derived from the lineariza-
ion of Eq. (5). The change in voltage differences V + �V in
esponse to a perturbation of conductivity distribution σ + �σ

an be expressed by the Taylor expansion:

V = ∂F

∂σ
(�σ) + O((�σ)2). (7)

Neglecting the higher order terms, Eq. (7) is simplified to the
inear form:

V = s �σ, (8)
here s = ∂F(σ)/∂σ is the Jacobian matrix, also referred to in
iterature as the sensitivity matrix, which is computed based
n multiple solutions of the FEM forward operator. Methods

o
N
l
c
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or the computation of the sensitivity matrix have been dis-
ussed in details in [6,12]. In their normalised form, the voltage,
onductivity and sensitivity matrix are defined as

i = �Vi

Vi

, (9)

j = �σj

σj

, (10)

ij = sij∑N
k=1sik

(11)

nd Eq. (8) is rewritten to

= SG. (12)

The linear forward projection operator is simply:

S = SG. (13)

.3. Inverse problem

Finding the conductivity distribution σ based on the voltages
easurements VM is called the inverse problem of ERT. Based on

he previous notation, the inverse problem is to find the inverse
f the forward operator:

= F−1(V ). (14)

In its normalised linear form, the ERT inverse problem com-
utes the inverse of the sensitivity matrix (12):

= S−1U. (15)

In general, direct analytical solution for Eq. (14) or (15) does
ot exist since F is a non-linear operator with more unknown
onductivity values than known voltage measurements. In that
ontext, only approximations of F−1 or S−1 can be found by
umerical techniques, representing both challenges and limita-
ions for ERT imaging.

Approximations of S−1 are commonly derived using an
ptimisation method by computing a conductivity distribution,
hich minimises the difference between the measured voltages

nd the simulated voltages. With L2-norm, that corresponds to
olving the least-square minimisation problem:

ˆ = arg min
G

||UM − F (G)||22, (16)

or which both direct and iterative algorithms can be formulated.
Many reviews about electrical tomography image reconstruc-

ion techniques are available in the literature (e.g. [6,7,13,14]).
he choice of the approximation of S−1 in Eq. (15) leads to dif-

erent image reconstruction algorithms summarized in Table 2.
he simplest choice is to use the transpose of S, which cor-

esponds to the linear back projection (LBP) and Landweber
ethod. The Newton–Raphson method (NRM) appears to be

ery sensitive to the noise in the raw measurements because

f ill-conditioned Hessian matrix [6,12]. Therefore, a modified
ewton–Raphson method (MNRM), which includes a regu-

arization property, is commonly preferred. Depending on the
hoice of regularization matrix, the Tikhonov method or the
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Table 2
Approximations of S−1 in GIA

Algorithms Ŝ−1

LBP/Landweber ST

Newton–Raphson (SST)−1ST

Tikhonov (SST + λI)−1ST
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A study was carried out to evaluate the performance of
evenburg–Marquardt (SST + λW)−1

evenburg–Marquardt method can be obtained. In general, a
arge value of the regularization parameter λ tends to attenuate
he presence of noise in data, but also reduces the precision of the
econstructed image [7]. Thus, the choice of the regularization
arameter λ is seen as a compromise between the noise level
nd the desired precision of the solution.

Single-value decomposition (SVD) can be used to solve the
nverse problem but it is very sensitive to the noise as well, even
n presence of very small singular values. Truncated single-value
ecomposition (TSVD) can alleviate the problem by filtering
he singular values. With the MNRM and TSVD methods, some
egularization parameters must be fitted as a function of the noise
evel, mostly by a trial-and-error method. The preconditioned
onjugate gradient method can also be used to solve the inverse
roblem of ERT.

. A generalized image reconstruction algorithm for
RT

In this work, the reconstruction algorithms developed for ERT
re synthesised in the following iterative form:

Ĝk+1 = Ĝk + τkŜ
−1
k Rk, for (k = 1, 2, 3 . . .)

Rk = UM − F (Ĝk),
(17)

here Ŝ−1
k is the approximation of the inverse of Sk at iteration

, τk is a relaxation parameter and Rk is the voltage residual
o be minimised, which represents the difference between the

easured voltages and the voltages computed by the forward
rojection operator F. The general form of Eq. (17) is called
he generalized iterative algorithm (GIA) and the image recon-
truction techniques in literature can be classified according
o

the choice of approximation of sensitivity matrix inverse Ŝ−1

(Table 2);
the choice of forward operator F used in the calculation of the
residuals R (FFEM or FS);
the update of the sensitivity matrix Sk = S(Ĝk) during the
iterations;
the choice of the relaxation parameter τk.
The filtering operator P(G) defined in Eq. (18) can also be
ncorporated in Eq. (17) to make sure that iterations converge
o a convex set, where conductivity is upper bounded (GU) and

t
d
t

ng Journal 141 (2008) 305–317

ower bounded (GL):

(G) =

⎧⎪⎨
⎪⎩

GL if G < GL

G if GL ≤ G ≤ GU

GU if GU > G

, (18)

Finally, a stopping criterion is chosen such as the rate of
hange between reconstructed images (Eq. (19)) is less than a
reset parameter ε:

||Ĝk−1 − Ĝk||
||Ĝk−1||

≤ ε. (19)

.1. Relaxation parameter

The relaxation parameter τ takes into account the non-
inearity of the inverse problem and control the convergence
ate of the GIA. The simplest choice for τ is to use a
elatively small constant value which ensures slow con-
ergence of Eq. (17) at the price of a larger number of
terations. This value is usually determined by a trial-and-error

ethod.
To alleviate the choice of an appropriate relaxation parameter,

ome authors have suggested strategies to re-evaluate τ each
teration. In the case of Landweber iteration, optimal step-length
as derived by minimising the norm of the error residual R
sing an additional computation of the forward solution, at each
teration [15,16] namely

= ||STR||22
||SSTR||22

. (20)

It is possible to extend the calculation of the optimal step-
ength for the case of GIA leading to a generalized pseudo-
ptimal relaxation parameter τ*:

∗
k = F (Ŝ−1

k Rk)
T
Rk

||F (Ŝ−1
k Rk)||22

. (21)

he value for τ∗
k calculated by Eq. (21) depends both on the

pproximation of Ŝ−1
k and the forward operator F used in the

IA. Linearity of the forward operator is assumed in the deriva-
ion of Eq. (21). This assumption is however not rigorously
rue. Therefore, an under-relaxation factor η can be necessary to
nsure convergence:

∗∗ = ητ∗. (22)

Thus, the relaxation parameters defined by Eq. (21) or (22)
re an alternative to the constant τ value and they can be used
or any choice of Ŝ−1 and F in the GIA.

. GIA experiments with synthetic images
he GIA in ERT image reconstruction by using synthetic
ata from a set of known images. For each test case, syn-
hetic voltage differences were computed using a sensor model
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Fig. 2. Reconstructed images using GIA

olving the forward problem of ERT for the correspond-
ng conductivity distribution. Then, the synthetic data were
sed to reconstruct the image with our implementation of the
IA.
For that purposes, the geometry and dimensions of a com-

ercial ERT sensor device (ITS, UK) was considered. It consists
f a 3 in. pipe sensor having 16 circular electrodes of 8 mm in
iameter mounted in a ring and using adjacent protocol of mea-
urement. The meshes of the pipe sensor used in this work for
he FEM sensor model are shown in Fig. 1.

A set of five test cases was used in these performance exper-
ments: two cases represent non-conductive rods (referenced as
: one rod; B: two rods) at different location in the sensor; three
ases represent different heights of solid particles forming a bed
t the bottom of a pipe (referenced as C, D, and E, in increasing
rder). The conductivity of the continuous (most conductive)
hase was assigned to 300 �S/cm for each test case, while the

m

u
T

Fig. 3. Reconstructed images for the test case A with ideal synthet
deal synthetic data (η = 1, ε = 5 × 10−7).

on-conductive rods were associated with a 1 �S/cm conductiv-
ty. In the case of the solid particle bed, the minimum value of
he conductivity for a solid–liquid mixture was computed by the

axwell equation:

= 2 − 2Cs

2 + Cs
σL, (23)

here σL is the conductivity of the liquid conductive phase and
s is the solid concentration of non-conductive solid particles.
onsidering the maximum packing limit of particles in the bed is
bout 0.6 for solid spheres, a value of 0.3σL was obtained for the
lectrical conductivity of the bed (90 �S/cm). Also, a current of
5 mA was injected with adjacent pair strategy for the protocol

easurement.
For each test case studied in the following, the GIA was

sed to reconstruct the images using Landweber iterations and
ikhonov iterations with two different values for the regulariza-

ic data using linear forward projection (η = 1, ε = 5 × 10−7).
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ig. 4. Norm of voltage residual error (i) and conductivity error (ii) of images
econstructed for the test case A (Landweber iterations, τ = 0.1).

ion parameters (λ = 0.1 and 1). Also, the 2D FEM sensor model
Fig. 1i) was used to solve the forward problem and compute the
ensitivity matrix in GIA, given an image with 1028 unknown
ixels. The upper and lower limits of conductivity on images
ere imposed in GIA using the projection operator defined in
q. (18) (GU = 1.0 for conductive phase, GL = 0.3 for solid par-

icle bed and GL = 0.0001 for rods). A maximum number of
0,000 iterations was fixed and the stopping criterion defined by
q. (19) was set as ε = 5 × 10−7.

.1. Images reconstruction with ideal data

Fig. 2 presents the tomograms reconstructed using the GIA
rom the ideal synthetic data. The 2D FEM sensor model was
sed to reconstruct the images. Table 3 compares the number of
terations, the norm of voltages residual (||Rk||22), the correlation
oefficient (R2) and the error on the bulk concentration of the
on-conductive phase (eb) given by

b = C̃b − Cb, (24)

here C is the bulk concentration of the non-conductive phase
b
nd C̃b is the bulk concentration computed by

˜ b =
∑n

i=1CiAi

AT

, (25)

m
S
k
r
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here Ci is the concentration of the non-conductive phase in the
rea Ai of the ith pixel of image.

These results show that the Landweber and Tikhonov itera-
ions yield very similar results and their respective reconstructed
mages look very close to the image of reference. The numerical
alues reported in Table 3 indicate that the Tikhonov iteration
ith λ = 0.1 reaches a slightly smaller norm of residuals and a
igher R2 coefficients than with λ = 1 or the Landweber iteration.
n general, both the Landweber and Tikhonov iterations gener-
te good approximations of the images and CPU times remain
easonable: ∼500 iterations/min with Matlab scripts (Version
.1 Release 12.1) on a Pentium M laptop computer running at
.80 GHz with 1 Gb of RAM.

.1.1. Influence of forward operator and recalculation of
ensitivity matrix

Fig. 3 and Table 4, respectively, present the reconstructed
mages and the numerical values obtained with case A using
he linear forward projection FS as the forward operator com-
ined to the same numerical parameters (η, λ, ε) used to generate
esults in Fig. 2. Results show that the linear forward projection
rovides a quick approximation in a reduced number of itera-
ions yielding the image in less than 1 s. Looking at values of
ables 3 and 4, it is clear that the results are much less accurate
ith this linear forward operator, leading to significant errors on

he bulk concentration and lower correlation coefficients.
The influence of the linear forward operator on the qual-

ty of the results is presented on Fig. 4 where the voltages
rror (i) and the images error (ii) are presented as a function
f the iterations. This example illustrates the poor convergence
roperties of the Landweber iterations when the linear forward
rojection is used in the residual calculation of GIA. After
certain number of iterations, the norm of the image error

egins to increase while the norm of the residual continues
o decrease. Note that the same behaviour was experimented
ith Tikhonov iterations and similar observations were also

eported in the literature [7]. This indicates that the linear
orward projection exhibits undesired semi-convergence prop-
rties. To avoid the divergence of the algorithm, the iterative
rocess must hence be stopped after a given number of itera-
ions. In practice, the most appropriate number of iterations is
ery difficult to determine. After comparison of Tables 3 and 4
r from Fig. 4, it is clear that only the FFEM forward oper-
tor can ensure the convergence of GIA. Consequently, only
he FEM sensor model should be used to compute the resid-
al in GIA when quantitative images are desired, at the price
f longer CPU times for post-processing the ERT measure-
ents.
Fig. 4 also compares the norm of the image error along

he iterations with the sensitivity matrix recalculated each iter-
tion (Sk = S(Ĝk)) and the sensitivity matrix kept constant
Sk = S0). The convergence rates are similar and, surprisingly,
he norm of the image error along the iteration is smaller when
atrix S is kept constant. Thus, the recalculation of matrix
does not improve the precision of the GIA and could be

ept constant without exerting a strong influence on the final
esults.
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Fig. 5. Reconstructed images with 10% Gaussian noise contamination of ideal synthetic data (η = 0.5, ε = 5 × 10−7).

Table 3
Numerical results for images of Fig. 2

Case (Cb) Algorithm Number of iterations R2 (%) ||Rk||22 eb (%)

A (8.9%)
Landweber 6098 95.6 0.02 −0.1
Tikhonov (λ = 0.1) 4329 96.3 0.01 −0.1
Tikhonov (λ = 1) 825 90.3 0.10 0.3

B (17.7%)
Landweber 871 91.7 0.16 −0.5
Tikhonov (λ = 0.1) 997 93.2 0.06 −0.3
Tikhonov (λ = 1) 2346 93.2 0.09 −0.4

C (5.6%)
Landweber 286 95.2 0.16 0.3
Tikhonov (λ = 0.1) 1275 99.0 0.02 0.0
Tikhonov (λ = 1) 1924 98.0 0.04 0.0

D (11.9%)
Landweber 17 93.4 0.49 1.3
Tikhonov (λ = 0.1) 3097 99.0 0.03 0.2
Tikhonov (λ = 1) 4853 98.7 0.03 0.2

E (30.4%)
Landweber 68 97.4 0.56 0.0
Tikhonov (λ = 0.1) 2987 99.5 0.05 0.0
Tikhonov (λ = 1) 3985 99.1 0.07 0.0

Table 4
Numerical results for images of Fig. 3

Algorithm Number of iterations R2 (%) ||Rk||22 eb (%)

Landweber 8 73.8 0.88 9.2
Tikhonov (λ = 0.1) 31 67.2 0.74 9.6
Tikhonov (λ = 1) 73 64.6 0.69 10.5
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.1.2. Influence of the relaxation parameter
According to the results of Fig. 2 and Table 3, the calculation

f the pseudo-optimal relaxation parameter τ* (Eq. (21)) allows
onvergence of the GIA with each case tested. Because the cal-
ulation of τ* requires additional FEM forward solution each
teration (τk = τ*), a constant value of τ can effectively reduce
he CPU time. The selection of an appropriate constant value
f τ depends on the image to be reconstructed and there is a
inimum critical value of τ for which the GIA convergence

s stable and ensures a unique solution. Thus, small enough
value is required to facilitate the convergence of non-linear

nverse problem obviously at the expense of a larger number of
terations.

After a reasonable number of numerical experiments, it was
bserved that the number of iterations required to reach con-
ergence of the GIA (using both the Landweber and Tikhonov
terations) is inversely proportional to the τ value. For all the
ases tested, the same minimum of residuals and the same
mages were obtained for any value of τ below the critical value.
herefore, if the relaxation parameter is small enough, the GIA
onverge towards a unique solution and only the number of itera-
ions and CPU times are affected. This observation indicates that
y using small constant value or the pseudo-optimal relaxation
arameter and allowing large number of iterations, the image
econstructed with the Landweber and Tikhonov methods does
ot depend on the choice of the relaxation parameter and the
umber of iteration.

.2. Image reconstruction with noisy data

So far, the synthetic images have been reconstructed using
oise-free data to assess the performance of GIA with ideal
ata. On the other hand, experimental data are inevitably con-
aminated by noise and image reconstruction techniques must be
obust enough to handle the presence of noise. The noise level
nfluence was studied by contaminating the simulated voltages
ith a Gaussian normalised distribution (white noise) using

˜ = U(1 + N(0, δ)), (26)

here Ũ is the contaminated voltage vector, δ is the noise level
ercentage and N is a Gaussian distribution.

Reconstructed images and numerical results for a noise level
f δ = 10% are reported in Fig. 5 and Table 5 for the case of
andweber and Tikhonov iterations. In these images, under-

elaxation of pseudo-optimal parameter with η = 0.5 was used
o ensure convergence of every case tested. With noisy data, the
orm of the voltages residual and the error on the bulk concen-
ration of the non-conductive phase increase as expected, while
he correlation coefficient decreases slightly. With the Tikhonov
terations, the use of λ = 1 produces fewer artefacts and higher
orrelation coefficient than λ = 0.1.

The results indicate that there is a relatively weak influ-

nce of noise level on the quality of reconstructed images
hen the GIA is used with an adequate parameter values.
his suggests that the Landweber and Tikhonov iterations are

elatively robust to noisy data, at the expense of lower pre-

T
p
f
t

ig. 6. Normalised voltage differences simulated using 2D and 3D FEM sensor
odels. (i) Case B and (ii) case E.

ision in the reconstructed images as for every tomography
echnique.

.3. Image reconstruction with non-ideal data

Up to this point, the reconstructed images were based on ideal
ynthetic data. The same 2D FEM sensor model was used to
enerate the normalised potential difference data and to com-
ute the residual in the GIA. This means that FEM sensor
odel can reach a zero residual value if the true image is given.

n practice, discrepancies between numerical and experimental
ensors are inevitable and a non-ideal sensor has been consid-
red to generate synthetic data using a complete 3D FEM sensor
odel.
In Fig. 6, non-ideal data generated for the 3D mesh sen-

or model presented in Fig. 1ii with a contact impedance value
f z = 0.2 are compared to ideal data. The normalised potential
ifference vectors are relatively similar for the 2D and the 3D
odel. Thus, a simple 2D approximation to solve the forward

roblem of ERT can be used instead of an expensive 3D model.

he use of a 2D model is then justified to solve the forward
roblem in the GIA. However, differences between predictions
rom 2D or 3D model are not negligible and can potentially limit
he performance of image reconstruction algorithms.



R. Giguère et al. / Chemical Engineering Journal 141 (2008) 305–317 313

Table 5
Numerical results for reconstructed images of Fig. 5

Case (Cb) Algorithm Number of iterations R2 (%) ||Rk||22 eb (%)

A (8.9%)
Landweber 1555 91.5 0.42 −0.1
Tikhonov (λ = 0.1) 200 89.9 0.43 0.3
Tikhonov (λ = 1) 2009 91.0 0.42 0.0

B (17.7%)
Landweber 583 87.9 0.71 −0.2
Tikhonov (λ = 0.1) 113 86.8 0.73 0.1
Tikhonov (λ = 1) 1223 87.2 0.69 −0.5

C (5.6%)
Landweber 249 93.0 0.34 0.5
Tikhonov (λ = 0.1) 88 93.6 0.31 0.5
Tikhonov (λ = 1) 114 94.0 0.29 0.4

D (11.9%)
Landweber 332 95.9 0.75 0.5
Tikhonov (λ = 0.1) 143 95.5 0.92 0.5
Tikhonov (λ = 1) 315 95.8 0.75 0.5

E

f
Q
p
m
v
t
c
t

r
t

5

(30.4%)
Landweber 379
Tikhonov (λ = 0.1) 318
Tikhonov (λ = 1) 299

Fig. 7 and Table 6 present the results for images reconstructed
rom the non-ideal data with the 2D forward model in the GIA.
ualitatively, these images are quite similar to those obtained
reviously but images reconstructed using non-ideal data are
ore contaminated by artefacts. Quantitatively, larger residual
alues were generally obtained leading to lower number of itera-
ions necessary to reach convergence. In spite of that, correlation
oefficients and bulk concentration are reasonably similar to
hose computed from ideal data, meaning that GIA is relatively

c
d
s

Fig. 7. Reconstructed images with non-ideal synthetic d
98.2 1.65 −0.1
94.5 2.55 −1.6
97.9 1.71 −0.4

obust to the presence of non-ideal data. Therefore, a 2D model
o solve the forward problem is suitable in the GIA.

. Images from experimental measurements
ERT measurements were then carried out under laboratory
onditions using the p2000 (ITS, UK) and the pipe sensor
escribed earlier for the synthetic study. Experimental mea-
urements of static conductivity distributions were used to

ata from 3D sensor model (η = 0.5, ε = 5 × 10−7).



3 ineeri

r
r
I

5

fi
w
o
t
h
3

o
I
G
i
o
I
o
t
i
T
c
e

w
T
t
t
p
a

5

w

t
s
s
i
s
s
w

o
w
1
m
a
m
G
a

t
4
i
r
w
c
s
e

o
1
(
d
p
a
F
q

T
N

C

A

B

C

D

E

14 R. Giguère et al. / Chemical Eng

econstruct images using the GIA and were compared to images
econstructed by means of the LBP method implemented in the
TS software.

.1. Non-conductive rods

First, non-conductive rods were inserted in the pipe sensor
lled with NaCl solution (325 �S/cm) and ERT measurements
ere carried out using current injection of 15 mA at frequency
f 9.6 kHz. This value of electrical current ensures good signal-
o-noise ratio for the reference measurements when having
omogenous NaCl solution with electrical conductivity between
00 and 400 �S/cm.

Three test cases of real rods were experimented: centered and
ff-centered single rod (cases A and B) and two rods (case C).
mages reconstructed from these test cases with ITS software and
IA are compared in Fig. 8 and numerical results are reported

n Table 7. The LBP method provides good qualitative images
f single rod, but cannot distinguish the presence of two rods.
nterface of rods are diffuse and minimum conductivity value
f images is far from the non-conductive value expected. On
he other side, the use of GIA with Landweber and Tikhonov
terations can improve the reconstructed images significantly.
he interface of the rods is much sharper and the minimum
onductivity values of the tomogram are close to the zero value
xpected for the non-conductive rods.

As for the synthetic data case study, minor differences
ere observed between Landweber and Tikhonov results. The
ikhonov iteration seems to produce more artefacts while for

he Landweber iteration, the use of pseudo-relaxation parame-
er cannot ensure convergence of GIA and an under-relaxation
rocedure with η = 0.5 is needed to converge properly the single
nd two rods cases.
.2. Bed of solid particles

Cases of static particle bed at the bottom of the pipe sensor
ere generated to assess the performance of ERT to quantify

p

o
u

able 6
umerical results for reconstructed images of Fig. 7

ase (Cb) Algorithm Number of iteratio

(8.9%)
Landweber 6347
Tikhonov (λ = 0.1) 1712
Tikhonov (λ = 1) 7604

(17.7%)
Landweber 1021
Tikhonov (λ = 0.1) 463
Tikhonov (λ = 1) 1248

(5.6%)
Landweber 564
Tikhonov (λ = 0.1) 108
Tikhonov (λ = 1) 125

(11.9%)
Landweber 32
Tikhonov (λ = 0.1) 2458
Tikhonov (λ = 1) 4312

(30.4%)
Landweber 52
Tikhonov (λ = 0.1) 1104
Tikhonov (λ = 1) 6797
ng Journal 141 (2008) 305–317

he size of a bed of particles in a pipe. For that purpose, the pipe
ensor was filled with conductive water and a known amount of
olid particles, consisting of spherical glass particles of 100 �m
n diameter. The reference measurements were taken with the
ensor in vertical position and all the solid particles at bottom of
ensor while the measurements with the particle bed were taken
ith the sensor in a horizontal position.
In a first attempt, ERT measurements were taken for the case

f a bed with a bulk concentration of 17 % (v/v) in solid particles,
ith NaCl solution of around 400 �S/cm and current injection of
5 mA. Images reconstructed for these measurements with LBP
ethod and GIA are presented in Fig. 9a and numerical results

re reported in Table 8. At first glance, it seems that the LBP
ethod provides relatively good representation of the bed while
IA produces poor images, which are highly contaminated by

rtefacts.
It was found that for the case of particle bed, the injec-

ion of 15 mA was inappropriate for a conductive solution of
00 �S/cm. In fact, the presence of non-conductive particles
ncreases the electrical resistance of materials in the sensor and
elatively high voltages have to be measured by the ERT hard-
are. Thus, for too high current injection or too small absolute

onductivity of mixture, the corresponding voltages to mea-
ure can fall out of range of the hardware capability, producing
rroneous measurements.

Images were reconstructed using ERT measurement carried
ut for a bed of solid particles having conductive solution of
800 �S/cm with 15 mA (Fig. 9b) and 400 �S/cm with 1 mA
Fig. 9c). With these combinations of absolute electrical con-
uctivity and current injection, images reconstructed with GIA
rovide acceptable approximations of the bed of solid particles
nd also a reasonable prediction of the solids bulk concentration.
or these measurements, the results from the LBP method are
ualitatively good, but over-estimate the concentration of solid

articles.

The influence of electrical conductivity and current injection
n ERT results is also evident by looking at the measurements
sed to compute images of Fig. 9 and comparing with syn-

ns R2 (%) ||Rk||22 eb (%)

95.1 0.12 0.0
95.3 0.14 0.2
95.1 0.12 0.0

85.9 0.31 −0.9
87.8 0.35 −0.4
85.8 0.31 −0.8

93.7 0.13 −0.2
93.6 0.11 0.0
93.0 0.22 0.0

93.9 0.50 0.6
95.9 0.16 0.0
96.7 0.14 −0.2

96.0 0.62 0.4
97.5 0.26 0.2
98.1 0.21 0.2
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Fig. 8. Reconstructed images of non-conductive rods inserted in the ERT pipe sensor (η = 0.5, ε = 5 × 10−7).

Table 7
Numerical results for images of Fig. 8

Case (Cb) Algorithm Number of iterations ||Rk||22 eb (%)

Centered rod (4.0%)

ITS LBP 1 – 1.0
Landweber 7,156 0.09 0.0
Tikhonov (λ = 0.1) 481 0.10 0.2
Tikhonov (λ = 1) 10,000 0.09 0.0

Off-centered rod (4.0%)

ITS LBP 1 – 2.0
Landweber 3,421 0.18 −0.2
Tikhonov (λ = 0.1) 321 0.22 0.2
Tikhonov (λ = 1) 3,449 0.19 0.0

2

ITS LBP 1 – 4.1
Landweber 2154 0.26 −0.2

t
(
o
m

rods (8.0%)
Tikhonov (λ = 0.1)
Tikhonov (λ = 1)
hetic data generated by 2D FEM sensor model used in GIA
Fig. 10). Results clearly demonstrate that for the combination
f 400 �S/cm and 15 mA, the normalised potential differences
easured by the hardware are too small and there are impor-

t
T
w
F

Fig. 9. Reconstructed images of solid particle bed (Cb = 17.4%
217 0.30 0.3
6301 0.26 −0.1
ant differences with the numerical sensor model predictions.
hese erroneous measurements of voltage differences explained
hy GIA failed and cannot reconstruct acceptable images in
ig. 9a.

) at bottom of ERT pipe sensor (η = 0.5, ε = 5 × 10−7).
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Table 8
Numerical results for reconstructed images of Fig. 9

Case Algorithm Number of iterations ||Rk||22 eb (%)

A

ITS LBP 1 – −0.3
Landweber 54 2.34 −7.4
Tikhonov (λ = 0.1) 340 2.40 −6.4
Tikhonov (λ = 1) 503 2.24 −7.4

B

ITS LBP 1 – 4.6
Landweber 722 1.04 0.6
Tikhonov (λ = 0.1) 399 1.16 1.3
Tikhonov (λ = 1) 775 1.04 0.7

C

ITS LBP 1 – 4.5
Landweber 1359
Tikhonov (λ = 0.1) 181
Tikhonov (λ = 1) 1652

F
o
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o
c
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F
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c
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ig. 10. Comparison of measured and simulated normalised voltage differences
f Fig. 9.

.2.1. Calibration curve
Finally, ERT measurements were obtained for different size
f solid particle beds with current injection of 1 mA and electri-
al conductivity of NaCl solution between 300 and 400 �S/cm.
or each measurement, images were reconstructed using LBP
nd GIA algorithms. The corresponding bulk concentrations

ig. 11. Calibration data of solid particle bed concentration (Cb) using ERT.

a

6

f
u
i
i
t

m
L
r
o
t
q
w
W
i
i

1.51 0.1
1.62 0.2
1.52 0.1

Cb) of solid particles are compared in Fig. 11. These calibration
urves show that the use of GIA iterations provides an estima-
ion of Cb with less than 1% (v/v) of error. Using LBP algorithm,

b was found correct only for small bed of particles (2.5%, v/v),
hile an over-estimation of about 5% (v/v) is obtained when
ore particles are present. This is in agreement with calibration

esults of [17] by the LBP method, where over-estimation was
eported. Also, it is interesting to underline that the LBP method
n combination with a calibration curve can be suitable to rapidly
etermine the size of a bed without expensive post-treatment.

These results show that the GIA can output quantitative
mages to visualize solid particle beds. The GIA is limited by
he quality of experimental measurements. In particular, careful
ttention must be paid to the choice of current injection intensity
ccording to the absolute conductivity of the sensing materi-
ls. This also points out the importance of having numerical
odel of ERT sensor that efficiently emulates the real sensor

ata and vice-versa. The FEM sensor models used in this work
as shown good capability to simulate sensor data, allowing the
iagnostics of the quality of experimental data and determining
n appropriate value of current injected.

. Conclusion

In this paper, quantitative image reconstruction techniques
or ERT have been implemented and systematically evaluated
sing synthetic and experimental test cases. For that purpose,
mage reconstruction techniques from literature were expressed
n a general iterative algorithm, called the GIA, which facilitates
heir implementation and their comparison.

Synthetic and experimental case studies were used to deter-
ine a suitable strategy for the GIA. This consists of the
andweber or Tikhonov iterations, with calculation of voltage

esidual by a FEM sensor model and calculation of the pseudo-
ptimal relaxation parameters at each iteration. It was shown that
his strategy can ensure convergence and provide a successful
uantitative approximation for all test cases tested in this work,

ithout specifying any parameters by a trial and error method.
hen comparing with direct LBP method, the use of the GIA

mproved significantly the image precision, allowing for a better
nterpretation of the ERT measurements.
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This work shows that quantitative imaging can be performed
ith ERT measurements. In this context, ERT coupled with GIA

mplementation is a promising technique to visualize quantita-
ively multiphase flow in process application, like monitoring
lurry flow in pipe.
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